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ADDENDUM 

Inner product perturbation theory for a perturbed 
two-dimensional oscillator with mixed parity potential 

M R M Witwit~qd J P Killingbeck ~ . 

Department of Applied Mathematics,~University of Hull, Hull HU6 7RX, UK 
- . . . ,  

. .  , . Received 22 March 1993 

Abstract. Ground and excited state energy levels of the Schrodinger equation for various model 
potentials in two-dimensional space ~xe~ catculated, using inner product and renormalized series 
techniques. over wide ranges of relevant penurhation~pararneters. Mixed parity potentids ut 
treated. whereas earlier works have treated only even parity perturbations. 

~~ 
. .  ~, 

. .  . .  

This work describes 'a generalization. to the case of mixed parity perturbations of the inner 
product-perturbation t h e o j  for the two-dimensional perturbed oscillator. 'The basic thwry~ 
of the method has been reported earlier for the case of even parity perturbations [l, 21. We 
take the Schrodinger equation i n  the form 

. 

and the perturbing potential in the nomeparable form 

V ( x ,  y )  ,= [u,,x4 + 4b.+'y + 6c,,x2y2 + 4b,,xxy3 + ayyy4] (2) - .  . .  

which we re-write to include a renormalization parameter.;: 

' (3)  

(4) 

vr(x, y )  = prx* + YZI + . .  W ( x ,  Y, .. -a(.: + YZH . .  
. .  

, ~ ~ . .  

. ., , ' . .  , . .  
with 

, '  p = 1 + i i .  , ,  

,~ . .  
Varying a improves the convergence properties of the energy perturbation series and 

enables numerical results to be obtained for many'energy~levels and over a wide range of 
h values. 

The principal recurrence relation is pbtained by introducing the reference' function: ' ' ' 
. .  

where n, and ny are state numbers, with values, 0, 1, 2; . . .: To getermine'the energy 
eigenvalue, we begin from the equation 

IQ 
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. .  . 
E R ( M ,  N )  = ( q H x M y N I Q )  , .  
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Table 1. Eigenvalues of for several eigenstates for the potential (3) using the inner 
product technique for several se& of perturbation parameters. The parity label (n = +, -; even, 
odd) for the x c) y interchange symmetry 
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obtained by taking the inner product of the Schrodinger equation ( 1 )  with the reference 
function (5). The R ( M ,  N ) ,  sometimes called moments, are defined by 

R ( M . N )  = (Y]x ‘yNI@) .  (7) 

R ( M ,  N )  = R ( M ,  N ,  K ) h K  (8) 

Substituting the perturbation expansions 

K 

E = Z E ( J ) h ’  
I 

into the R ( M ,  N )  recurrence relations arising from equation (6) leads to a recurrence relation 
for the perturbation coefficients which is a generalization of that given previously [ l , 2 ] ;  

k E ( I ) R ( M ,  N , K ~ - J ) = a , R ( M + 4 , N , K - 1 ) f a y , R ( M , N + 4 ,  K - 1 )  
I=O 

+6cxyR(M+2,  N + 2 , K - 1 ) + 4 b x , R ( M + 1 , N + 3 , K - I )  

+4byzR(M+I, N+3,  K- l ) -a[R(M+2,  N .  K - l ) + R ( M ,  N + 2 ,  K-I)] 
x,9[4M+4N+2nZ+2n,+2]R(M, N ,  K)-M[2M+2nX-1]R(M-2, N ,  K )  

(10) 

(11) 

where the indices S, and S, can be used to pick out particular states by using the initial 
condition R(S,, S,, 0) = 1. In general the indices M, N ,  K are scanned as explained in 
[1,2],  and the various R ( M ,  N ,  K )  are calculated recursively. For the special case M = S,, 
N = S, the recurrence relation permits extraction of the energy coefficients E ( K ) ,  because 
of the condition R(S,, S,, K )  = 6(0, K) which is imposed on the algorithm. 

In the case of an isotropic perturbation V (i.e. for special choices of the potential 
coefficients) the hypervirial perturbation method [2] is applicable to the problem; we have 
checked that it then gives results in agreement with those of the inner product perturbation 
approach. For these special isoh-opic cases the potential can be expressed in a radial form 

(12) 

where f i  = 1 + ha, a is the adjustable renormalization parameter and m is the magnetic 
quantum number. For both the inner product and hypervirial methods varying parameter a 
was found to be very effective in producing accurate numerical results from the perturbation 
series. Table 1 shows some typical results. Results for many more states and h values 
are available from the authors and are deposited with the British Library ,Supplementary 
Publications Scheme, document no S U P  70048. We performed special internal checking 
calculations for the case a,, = a,, = 4, a,, = i, for which the perturbation can be written 
in the alternative form 

(13) 

with A = ~ l / 3 .  This form leads to an inner product perturbation calculation with h and h2 
terms, so that the cerms of various orders of h~become differently mixed together in the 
energy series. The fact that this alternative series gave results in agreement with those of 
the earlier series increased our confidence~in the accuracy of the results reported here. 

- N[2N + 2 n y  - l ] R ( M .  N - 2 ,  K ) .  

E(0)  = ,9[4S, +4S, + 2n, +by + 21 
The unperturbed energy can be written in the form 

V ( r )  = fir2 + [m2 - $]r-’ + h[r4 - ar 2 ] 

V ( x ,  y )  = h[x4 + y41+ 2h22y2 



3662 

References 

M R M Witwit and J P Killingbeck 

111 
P I  

Killingbeck J P and Jones M N 1986 L Phys. A: Moth Gen. 19 705 
Witwit M R M 1991 J. Pkys. A: Mark Gen. 24 4535 


